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SUMMARY

We consider a heteroscedastic linear regression model with replication.
To estimate the variances, one can use the sample variances or the sample
average squared errors from a regression fit. We study the large sample
properties of these weighted least squares estimates with estimated weights
when the number of replicates is small. The estimates are generally
inconsistent for asymmetrically distributed data. If sample variances are
used based on m replicates, the weighted least squares estimates are
inconsistent for m = 2 replicates even when the data are normally
distributed. With between 3 and 5 replicates, the rates of convergence are
slower than the usual square root of N. With m > 6 replicates, the effect of
estimating the weights is to increase variances by (m-5)/(m-3), relative to

weighted least squares estimates with known weights.

Some Key Words : Generalized Least Squares, Heteroscedasticity., Regression,

Replication.
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Section 1 : Introduction «Fh)
L
Consider a heteroscedastic linear regression model with replication: qsgj
=x B+o.e (i=1 N), (j=1 m) (1.1) oy
yij = X i&4j =1,...,N), =1,...,m). . i:f:
. : : %
In model (1.1), B is a vector with p-components, the eij are independent and F )
identically distributed mean zero random variables with variance one. The )
o
} g
el
heteroscedasticity in the model is governed by the unknown o, We have taken i
, o S
the number of replicates at each x, to be the constant m primarily as a iy
®
matter of convenience. In practice, it is fairly common that the number of 0y
N
design vectors N is large while the number of replicates m is small. Our "'
‘0
intention is to construct an asymptotic theory in this situation for weighted '“‘
[
least squares estimates with estimated weights. T

L

y |

As a benchmark, let BWLS be the weighted least squares estimate with

o) ",:
weights 1/0?. Of course, since the o, are unknown this estimate cannot be :ﬁ:
®
calculated from data. If m is fixed and R
AR
S N S
SWLS = plim N z xixi/ai. N
N0 i=1 e
I\.v.\
then
1724 -1
(Nm) (ﬁWLS - B) 2 Normal(O, SWLS) . (1.2)

One common method for estimating weights uses the inverses of the sample

variances,

- o, m
0? = s? = (m-1) 1 Z (y
il i j=1

- 3.2 . (1.3)

ij i
The resulting weighted least squares estimator will be denoted by BSV'
This method is particularly convenient because it involves sending only

the estimated weights to a computer program with a weighting option. The

obvious question is whether ﬂSV is any good, and whether the inferences made

by the computer program have any reliability. In Sections 3 and 4, we answer
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both questions in the negautive, at least for normally distributed data with
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less than 10 replicates at each x. In many applied fields this is already

folklore (Garden, et al., 1980). Yates and Cochran (1938) also have a nice
discussion of the problems with using the sample variances to estimate the
weights.

More precisely, for normally distributed data we are able to describe
the asymptotic distribution of st for every m. For m 2 6, this is an easy
moment calculation and we show that st is more variable than BWLS by a
factor (m-3)/(m-5). The same result was obtained by Cochran (1937) for the
weighted mean. Not only is st inefficient, but if one uses an ordinary
weighted regression package to compute BSV' the standard errors from the
package will be too small by a factor exceeding 20% unless m 2 10. For
example, if one uses m = 6 replicates, the efficiency with respect to
weighted least squares with known weights is only 1/3, and all estimated
standard errors should be multiplied by v3 = 1.732. For m < 5, we use the
theory of stable laws and Cline (1986a,b) to describe the asymptotic
distributions. Perhaps the most interesting result here is that if only
duplicates {m = 2) are used, weighted least squares with estimated weights is

not even consistent. The results are outlined in Table 1.
{TABLE 1 AFTER THIS POINT]

A second method for estimating weights is to use the linear structure of
the means. Write BL for the unweighted least squares estimate and define the
average squared error estimate by

o T T -1 7 )2

- _ _Ja
Oig = %o(B ) =m jfl (u;; — % B

The resulting weighted least squares estimate will be denoted by BEL'

~

A third method is the normal theory maximum likelihood estimate BML'
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which is a weighted least squares estimate with weights the inverse of

A2 -~ ~
%3 = %2(Py )

This can be thought of as an iterated version of BEL’

(1.5)

These methods hLave been discussed in the literature for normally
distributed errors. Bement and Williams (1969) use (1.3), and construct
approximations (as m - «)} for the exact covariance matrix of the resulting
weighted least squares estimate. They do not discuss asymptotic
distributions as N - ® with m fixed. Fuller & Rao (1978) use (1.4) while
Cochran (1937) and Neyman & Scott (1948) use (1.5). Both find limiting
distributions as N = ®© for fixed m > 3, although the latter two papers
consider only the case that XIB = pu.

One striking result concerns consistency. The estimates BSV' BEL and
ﬁML are always consistent for symmetrically distributed errors but generally
not otherwise: see Theorems 1 and 3. In Section 5, we compute the limit

distributions of BEL and BML’ The relative efficiency of the two is

contrasted ir the normal case for m >» 3, as follows.

Remark 1 : If ordinary least squares is less than 3 times more variable than
weighted least squares with known weights, then BEL is more efficient than

maximum likelihood.

Remark 2 : If ordinary least squares is more than 5 times more variable than
weighted least squares with known weights, then maximum likelihood is more
efficient.

Further, for normally distributed data, maximum likelihood is more variable
than weighted least squares with known weights by a factor m/(m-2). This

means a tripling of variance for m = 3 even when using maximum likelihood.
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> Section 2 : Assumptions and Canonical Decomposition
; We will assume throughout that (xi. Ui) are independent and identically
2 distributed bounded random vectors, independently distributed of the {ei.}.
. We define z, = xi/ai and di = ai/ai. For any weighted least squares
L estimator with estimated weights w, = 1/0?.
! ~ - N ~1"1 _; N ~
B-8B-= [N 1 z z.zT /dz] N 1 2 z.e /d; . (2.1)
. il i . il
) i=1 i=1
p Assuming they exist, we note that the asymptotic covariance of the weighted
A
j and unweighted least squares estimators are, respectively,
-1 T,,~1
SyLs = {E(zz )} (2.2)
3} and
o -1 Toy-1 o, 2T T,,-1
W S " = {E(xx )} " E(o™xx') {E(xx )} . (2.3)
? Section 3 : Weighting with Sample Variances
.S In this section, we describe consistency and asymptotic normality for
b
- weighted least squares estimates BSV with the weights being the inverse of
gi sample variances. We first describe the general case assuming that
Y sufficient moments exist. We then look more closely at the case of normally
L]
. distributed observations. In this setup,
“‘. A m
- = (m-1! 3 (e..-2)2.
. i R ij i
. j=1
. . _ g g2k _ - 1J 52k
A Define M = E(e;/d;") and Vi = E(Ieil /d).
j The first result indicates that we obtain consistency only when
: _np— a2
) My = E(ei/di) = 0. (3.1)
* This is true for symmetrically distributed data, but generally not otherwise.
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THEOREM 1 : vl
a If v {®and v { », then ey
11 01
. - - "1 SN
plim Bgy = B + (ny Syrg) 7y E(2). -4

so that consistency holds only if E(z) = O or (3.1) holds. oy

is asymptotically Normal{O, m(n22/ngl) S&is}. o :}

(b) If vy <@ for j <2 k<2and (3.1) holds, then (Nr)

Proof of Theorem 1 : This follows from the weak law of large numbers and the

central limit theorem. O gg:‘
Y

For normally distributed observations, the assumption that vjh ¢ @ for e
j. R € 2 holds only if there are at least 6 replicates. In this case, we 2o

have the following corollary. 4

COOROLLARY 1 : Assume that the errors eij are normally distributed. For m

Y
172 4 ) ) -1 Ny
(ﬁsv - B) is asymptotically Normal(O, (m-3)/(m-5) S 8] et

6, (Nm) WLS)' NS,

o

TNy

I.- -'

T

Comparing with (1.2), we see that the effect of using m 2 6 replicates :f;;

(LS

BNy

to estimate sample variances causes an inflation of variance by the factor :f:‘
o

(m-3)/(m-5) over weighted least squares with known weights. Even with m = Fot

RO

10, this results in a 40% increase in variance. ;:Q5

If one uses a standard statistical package with weights I/S?, then the

resulting standard errors will also be asymptotically incorrect. Such

. . : A 72 4 IS

packages estimate the asymptotic covariance matrix of (Nm) (ﬁSV - B) by o
1-'f

;2 é_l where ff?j
SV TWLS, .

- N m )

2 -1 T % 2,2 B
- (Nm- - : ol
ogy (Nm-p) izl jzl(yiJ x; ﬁsv) /Si : '(:V

AN I DT AT
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S =N 2 x.x./s,

T, 2

WLS LA A

i=1

If m 2 6 and if the data are normally distributed, then Ugv converges in

oy 2 . a2

probability to E(l/di) = (m-1)/(m-3), while (SWLS - (m-1)/(m-3) SWLS) - 0.
~2 -1 -1 .

Thus, (aSV SWLS - SWLS) - 0. Asymptotically, therefore, standard errors

should be multiplied by {(m—3)/(m—5)}1/2= see Table 1.

Section 4 : Sample Variances With m < 5 Replicates in the Normal Case

In this section, we consider normally distributed data with m < 5
replicates and the weights being the inverses of the sample variances. Here
Theorem 1 does not apply since E%/&? does not have finite variance. The
results here are based on the work of Cline (1986). We first state a general
result which may be of independent interest. The results for weighted least
squares, assuming normal errors, are then derived as a corollary.

First, a few definitions are required. A positive function u is
regularly varying with exponent p, denoted by p € RV(p), if

p(yt)/ult) - yp as t 2o for all y > 0.
Let (zi. U, wi) be independent and identically distributed random

variables with z, € RP independent of (ui, w,), u; with a symmetric

i
distribution and w, > 0. Define ul(t) = E{w I{w < t)} and uz(t) =
E((uw)2 I(uw £ t)}. Let (ClN' C2N) be constants satisfying, as N -2 o,
2
N “1(°1N)/ClN -1 and N uz(czN)/czN -1,
If a, < 1, then S1 = Sl(al) will denote a positive stable random

variable with Laplace transform

a

E{exp(-t5;)} = exp{-T(2-a;) t '

/al}.
If a, = 1 then S1 = 1 almost surely. We will denote by S2 = 2(a2) a

symmetric stable random variable with characteristic function
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%2
E{exp(itSz)} = exp{—F(B—az) cos(wa2/2) [t] /(a2(1—a2))}.

Of course, if ay = 2 then S2 is standard normal.

THEOREM 2 : Assume that # € RV(l—al). My € RV(2—a2) and that

-1 N -1 N
[CIN .2 v, Copn _2 uiwi] (4.1)
i=1 i=1

is asymptotically distributed as [él(al). S2(a2)]. Suppose that for some & >
0 and all i,j,
v .
E(lzijl ) < @ for v = min(2, max(2a1,a2) + 8).

Then there exists Yl' Yé (Y2 e RP, Yl pxp positive definite) such that

N T -1 N
bN = (CIN/C2N) [.E 2,z W, ] Sz uw

i=1 gzp VT
is asymptotically distributed as Yl-1 Y2. Further, for any b e RP, bTYlb and
b»TY2 have the some distrib:tions, respectively, as
2a 1/a a,\y1/a
{E[Iszl 1]} s, and {E[IBTzI 2]} %s,. o

Remark 3 : In Theorem 2, Yl and Y2 are not necessalily independent unless a

=1 or a, = 2. In the former case, Y1 = E(ziT) almost surely, while in the

latter case Y2 is normally distributed with mean zero and covariance E(zzT).

Proof of Theorem 2 : Consider first the case oy < 1. From Theorem 1 of Cline

(1986) we get

N N

-1 T -1

[ CIN '2 Z,Z; L. Coy 'E Z.U.w, ]
i=1 i=

is asymptotically distributed as (YI'Y2)' In the case that a; = 1, then S1 =
1 almost surely by Feller (1971, p. 236). From unpublished work of Cline and
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. from Gnedenko & Kolmogorov ((1954), p. 134), for each (j.k). )
. 4 N

1o plim c)y” 2 2 ;2 ;= E(2Zy 7))

Y i=1 g

%5

; The joint convergence of the remaining terms, c2;11 Eziuiwi, again follows ‘
’ from Theorem 1 of Cline (1986).

\l

::' In either case, convergence of the ratio bN follows. The limiting joint

::: distribution is difficult to describe, but the stated marginal distributions

1

’ of bTYlb and bTY2 can be inferred from Proposition 3 of Breiman (1965) and

L

e Theorem 3 of Maller (1981). One may also conclude that Y1 and Y2 are

:;t independent if a, = 1, since then Y1 is degenerate. Also, Y1 and Y2 are ;
- independent if ay = 2, since then Y2 is Gaussian, and for such limits the

\ ncn-Gaussian stable component is always independent of the Gaussian component Y
~ g
o (c.f.. Sharpe, 1969). a

L ‘
% 1,

.’ Special Cases : If (t/al) Pr(w > t) =» 1 for vy 2 O, then we have the

::: following cases: :
' l/a1 )
e (i) 1If 11<1, then a =71, Gy = 3y {N/(l—al)} , and S1 is positive

N :
'i stable. )
:; (ii) 1If ‘71=1. then a1=1. CIN T 3 N log(N). and Sl = 1. :
. (iii) If ~,>1, then a;=1. c;y=N E(w). and S, = 1.

>

2

..I

z. T

o If (t/a2) Pr(|uw| > t) » 1 for 7o > 0, then we have the following cases:

X l/a2

f:: (i) If ‘72<2. then A5=Tg. Coy = 8y {N/(2-—a2)) . and 82 is symmetric :
.:: stable. .
> .
1 s /2 ,
- (ii) If '72=2, then a2=2. Con = 21 a, N1/2 log(N). and S2 is Normal. 7
ke 1/2 21172 :
’; (iii) If '72>2. then a2=2. Con = N E|uw| , and 82 is Normal. !
% -
o :
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Consider the case of normally distributed errors in model (1.1}, where

RN
i)

we make the identifications z, = xi/ai. with E(zzT) =S Further, write

WLS®

%

X ‘:"‘_: 5y &

P

+
.
» »

-1

1%

U, = €, =m
1 1

M3

E, .
j=1 I

A

L
s

and

e e
TR,

® " v NN
LI 2
AT

o

2 -1
v, = I/di = {(m—l) ;

I M3

-1
- .2
1(t—.ij - ei) } .

iﬁjﬁ
> L4
.'5

Of course, u, and w, are independent and E(u?) o, Seta=(n-1)/2, a =a

172

DO YE 01
R
Pl
LAY AL

o
z
-

r(14a)y Y% and b = (2m)1"2 (F((1+2)72)}}%.  Then (t/2)% Pr(w > t) - 1,

s,
@

TS
S
Jelv.
s & _ &_21
"

(t/ab)a Pr(|uw| > t) » 1 and if @ > 1, E(w) = a/(a-1). With the indicated

.

choices of CiN and Con® Theorem 1 of Cline (1986a) shows that (4.1) holds.

PPNy
A

Y R
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Thus the conditions of Theorem 2 are met.
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QOROLIARY 2 : In the normally distributed case, with Sl. S2. Yl' Y2 as

S e
L2 ]
13
.

Ll

defined in Theorem 2, we have the following cases:

[g

Case 1 (m = 2) : a = a, = 172, and
1

(st - B) is asymptotically distributed as F2(3/4)/(9w) Yl_ Y2.

ey

N
’,.‘ .l )

"I',I‘.-’\f
A AA N

Case 2 (m = 3) : a; =ay = 1, and

log(N) (st - B) is asymptotically distributed as {2/(3v)}1/2 Yl_l Y2'

@
*

* 4

.
2t
7
3

'
I
AL

Case 3 (m = 4) : a, = 1, a, = 372, and

NI/3 (ﬁsv - B) is asymptoticelly distributed as 2_1/2 {T2(1/4)/(18w)}1/3
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Case 4 (m = 5) : a, 1, a, = 2 and

2
N1/2/log(N) (BSV B) is asymptotically distributed as 5_1/2 Y -1
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Case 5 (m > 6) : Covered by Corollary 1 already. o
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Proof of Corollary 2 : In the notation of Theorem 2, bN = (CIN/C2N) (ﬁsv - B)
1

- is asymptotically distributed as Yl_ Y2. Thus, in each case it suffices to ;
[y ™ )
. truct th tant . . n
b construc e cons s (ClN C2N)
. m=2) : Here a = 1/2, c y = (8/7) N* and cyy = {8 r2(3/4)/(97%)} N°.
' : _ _ 172
» m = 3) : Here a = 1, ciN = N log(N) and Con = {2/(37)} N. ;
- m=4) : Here a = 3/2, ¢,y = 3 Nand cpy = 2772 (3 r2(174)/(2m)) 3 N3 ;
- ey _ _ o 172 172 :
-~ m =5) : Here a = 2, N = 2 N and Con = 25 N log(N). o h
hat
Section 5 : Estimating Variances by Sample Average Squared Errors .'
. One might reasonably conjecture that making use of the known linear by
>, structure for the means results in improvements over using only sample 3
N
S variances. We will show that this is the case, at least for normally
N ~
3 distributed data. Let BO be any estimate of B, and define
. 2~ -1 % T 4 (2 S
- o (By) =m ™ 2 (yy; - x; By) 3
- j=1 N
N and d (B,) = 0,(By)/o;. We denote by B the weighted estimate with the K
; estimated weights 1/0?(30). As defined in the introduction, BEL uses Bo =
i ~ A ~ ~ Ly
; ﬁL. the ordinary unweighted least squares estimate, and BML used Bo = BML' ﬁ
. Our results here rely on the consistency of BO. and two other reasonable
i moment conditions for m large enough. Here are the assumptions. )
: plim B, = B. (5.1) 3
. For each ¢, > 0. there exists ¢, > 0 such that
' ) ~-2
H s 13200 - 3201} < (5.2) 3
~ ng_-plicc., -+ ¢ t 1 4
-:‘ € =2 :
- and such that 3
.. hY
T - a -2 Ja 7-2 ~
. E{ sup le.| |z2d.“(B,) - z==d.“(B)]|} ¢ c,. (5.3)
i OB i1 ‘T 8B i 1
IiB_-Bli<c
LY »* 2 &
£ \
‘: In addition, we assume the finite existence of \
" 4
' .

Ry B D N o A g A AN st o Gy, A A
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The first result describes the consistency of ﬁG.

Ny = EEV/a(B). vy, = E{Ie 1782 (B)) <= for jk <2 (5.4)

THEOREM 3 : Assume (5.1) - (5.4). Then

plim Bg = B + my,(n; Sys) | E(2). (5.5)

Thus, ﬁG is consistent only if M = O or E(z) = 0. Further, as N - =,
N1/2 172 4

2 -1
where plim A, = 1., S b, = N_1/2 3z Z‘/&z(a) and plim C, = 2 o
N = o1 Syis by = 1517%4 plim Cy =2 159 Sy s

Proof of Theorem 3 : Since the {zi} are bounded, the assumptions make
possible the usual Taylor’s series argument leading to (5.6) and (5.5) is an

immediate consequence of (5.6). o

Assuming consistency of the maximum likelihood estimator, we can compute

the limit distributions of BEL and 5ML'

THEOREM 4 : Make the assumptions of Theorem 3, with the {eij) being

symmetrically distributed.

(a) Let V1 = E(xxT) and V2 = E(a2 xxT) be finite and positive definite.

Let Sil = VIl V2 Vél. Then with BO chosen as the unweighted least squares

estimate, (Nm)ll2 (BEL - B) is asymptotically Normal(O.SEi). where
-1 -1

2 -1
Spp = m(nge/My) {(1 + 4 mg)) Syyg+ 4 my5 S0}

~

pML' the maximum likelihood estimate, then

I

(b) With Bo

172 % -1

(Nm) (BML - B) is asymptotically Normal(O, SML)' where
-1 -2 -1
Si = ™ Mg (Moy ~ 2M55) T Sy g o
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Proof of Theorem 4 : Parts (a) and (b) follow easily from Theorem 3,
2

Slutsky's theorem and the fact that (Nm)l/ (ﬁL - pB) is asymptotically .
S

%)
Normal(O,Sil).. o o

COROLLARY 3 : For normally distributed observations with m > 3, -

172 4 172 4

(Nm) (BML - B) and (Nm) (ﬁEL - B) are asymptotically normally

distributed with respective covariances

{n/(n-2)} S, and {(1 + 2"

0
L

2

1

e
l" “

-2, -1 -2 -1
- 8n 7) SWLS + 4m SL }. n]

A
5 6

Proof of Corollary 3 : By direct calculation as in Fuller & Rao (1978),

.

a ‘._‘.-
e
X

o1 = m/ (m-2}), Mgy = 1/m and Moo = 1/(m-2). o

...
DRSS
2're

‘l

l

«
w

|
Ly

As noted by Fuller & Rao (1978), the asymptotic covariance of BEL

s
Y S

S

consists of a mixture of the weighted least squares covariance SWLS and the

" w
} L
Al

A4
AR

unweighted least squares covariance Sil. Comparing BEL with the maximum

likelihood estimate BML depends on how much bigger S

Dl T
o

. -1
L is than SWLS'

Detailed calculations verify Remarks 1 and 2 of the introduction. Thus,

A
v ™y -;.I S
Rl
L YL

220

.
@ v
A

doing iterative weighted least squares may actually hurt, unless the starting [~ =

L}
24

~
.
(I

value ﬂL is sufficiently bad.
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Section 6 : Discussion {

A

Our results can be summarized as follows :

o
4

(a) If nothing is known about the structure of the sample variances,

'

then none of the common weighted estimates can be assumed to be consistent

P

PR

P

1@ .
‘e

f

r x
L

for data from an asymmetric distribution.
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(b) Using sample variances as a basis for estimating weights is ;ﬁv
o 4
inefficient unless the number of replicates m is fairly large, e.g., m 2 10, t}
"
s"
(c) Using sample average squared errors from a preliminary fit to the -:$
o
regression function as a basis for estimating weights is typically more &J
efficient than using sample variances. However, even here a fair number of ﬁ\!
N
Fahg
replicates is helpful. For example, the maximum likelihood estimate for :ﬁw
D
o
normally distributed data based on 6 replicates still has standard errors s
approximately 20% larger than ordinary weighted least squares theory would E?
t
suggest. L,:
There are at least two alternative methods for estimating the weights. :E:
[ )
The first is to model the variances parametrically, e.g., 5
4
T 9 L
Ui = U(Xi B) . ::
S
See Carroll & Ruppert (1987) and Davidian & Carroll (1987). The second is to {:'
®
perform a nonparametric regression of (1.3) and (1.4) against the predictors 55
and use this regression to estimate the weights (c.f. Carroll, 1982). Ci:
A
w0l
l‘{‘
[
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TABLE 1
-
A summary of the results when the weights are the inverses of sample :\'.‘
variances based on m replicates. The relative efficiency is calculated with t:
respect to weighted least squares with known weights. The column labelled S
"Standard Error Factor” is the number one should multiply standard errors &
from a weighted least squares package by to obtain asymptotically correct _
standard errors. EN
%
Asymptotically Rate of Relative Standard Error -
{(m) Consistent? Normal? convergence Efficiency Factor
2 No No - 0 - X
3 Yes No log(N) 0] - Py A
e ®
4 Yes No 73 0 - . s
. 7
v 5 s,
5 Yes Yes Nllzllog(N) ) - e _‘::
1/2 - o
6 Yes Yes N 1/3 1.73 c
B e Wi
7 Yes Yes N1/2 172 1.41 2 :
5 %
8 Yes Yes N2 3/5 1.26 < v
5
) Yes Yes N2 2/3 1.22 i
A
10 Yes Yes N2 5/7 1.18 i
e
)
.":4.
~
Y
o
&
\::
" ®
83
)
A
“’
)
1:’

>

S

»

L LN,

P

% "

+
OV

S

4
-,

i
W el el ey

w

L4

e '-{'x 3

[on

&
2

588

x

2

P A

A

P A



